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Introduction
Let us consider the following system of M partial differential equations[1,2]

(1)

where u ∈ ℜ M is the solution vector; cfi ∈ ℜ M is the convective flux vector and
dfi ∈ ℜ M is the diffusive flux vector; q denotes the volume source vector; t is
time; comma denotes partial derivative with respect to xi and the summation
convention is used throughout; Ω(t) is a bounded region in ℜ nsd with a
piecewise smooth boundary Γ (t), where nsd denotes the number of space
dimension; G = Ω(t) × I denotes the space-time domain with boundary S = Γ(t)
× I; I = (0, T ) is the time interval (T is the final time).

The initial/boundary value problem of (1) consists of finding a function u
which satisfies (1), the initial condition u(x, 0) = u0(x) on Ω(0) and appropriate
well posed boundary conditions of Dirichlet and Neumann type on Su = Γu(t) × I
and Sf = Γf (t) × I respectively.

The solution method chosen in this work is the spectral element method
which was first introduced by Patera[3]. This is a high-order weighted residuals
method which exploits the rapid convergence rates of spectral methods while
retaining the geometric flexibility of the low-order isoparametric finite element
methods. According to the semi-discrete finite element approach, the spatial
domain is broken up into macro spectral elements. Within each element, the
dependent variables are expanded in terms of pth order tensor product
Lagrangian interpolants through the Legendre-Gauss-Lobatto collocation
points. The Legendre-Gauss-Lobatto points are clustered near elemental
boundaries and are chosen because of their interpolation and quadrature
properties.
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Semi-discrete spectral element algorithms for solving equation (1) have been
developed for the simulation of unsteady incompressible fluid flow and heat
transfer[4]. This semi-discrete approach is of high-order accuracy in space but
only of low-order accuracy in time[4,5] and, therefore, the error of the fully
discretized method is dominated by the temporal error. This leads naturally to
the study of an important class of space-time spectral element methods,
allowing balanced accuracy in both space and time directions.

The concept of applying space-time finite element approximations was
pioneered in the late 1960s and since then has been expanded and further
developed through discontinuous spatial and temporal discretizations[6-19, and
references therein].

The purpose of the present work is to investigate the potential of these
methods by developing appropriate schemes on a number of selected
initial/boundary-value problems and presenting their convergence and stability
properties.

The outline of the paper is as follows: first, a computational model is
presented, followed by numerical results of various model problems with a
discussion. Finally, some conclusions are drawn.

Method of solution
The time interval is partitioned into subintervals In = (tn, tn+1) where tn and tn+1

belong to an ordered partition of time levels 0 = t0 < t1 < … < tN = T. A space-
time strip, for the nth time subinterval, is then defined as Gn = Ωn × In with
boundary Sn = Γn × In (Figure 1). This strip is then discretized into (nel)

n

elements, eG
n = e Ωn × In, e = 1, 2, …, (nel)

n. Within each element, the dependent
variables are expanded in terms of the pth-order tensor product Lagrangian
interpolants through the Legendre-Gauss-Lobatto integration points. Applying
the Galerkin method to equation (1) in conjunction with the group finite element
approximation for the non-linear convection term[1] yields (for each time step)
a set of non-linear algebraic equations coupling the nodal unknowns belonging
to the same time step. This fully implicit approach (FISTSE) seems less efficient
than classical semi-discrete techniques.

In order to increase computational efficiency, the following strategy was
suggested[9,19]:

• The non-linear set of equations, including all time sublevels in the
solution domain, are solved directly (i.e. using the FISTSE approach) for
the first time step only. Afterwards, a time increment (∆τ) is chosen such
that there is an overlapping time region between the first domain of the
solution and the second one (Figure 2). This overlapping includes up to
(p – 1) time sublevels (∆τ < Tn). The approximate solution within the first
domain is used to predict the approximate solution within the second
domain for the overlapping time sublevels. This is done by applying a
projection operator from the first domain to the second one, which can be
of the general weighted form (e.g. L2 projection[20]). This general
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weighted form may improve performance and be worth investigating.
However, in this study our attention is restricted to the simple direct
interpolation case[9,19] in order to improve computational efficiency.

The solution of the remaining upper time sublevels belonging to the
second domain is then obtained from the set of equations of the
discontinuous Galerkin spectral element formulation.

• The coefficient matrix of the approximate solution is partitioned into
submatrices so that each submatrix located off-diagonal is a diagonal
matrix, while those which are located on the diagonal are full
matrices[7,9,19]. This particular structure is used for constructing
explicit/implicit algorithms to solve the unknowns located on the upper
non-overlapping time sublevels.

The following two space-time spectral element methods were applied to solve
equation (1):

(1) Coupled methods
• Hyperbolic-dominated equations are treated explicitly (ESTSE).

Figure 1.
A space-time strip and

its finite element
assembly
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• Parabolic-dominated equations are treated implicitly (ISTSE).

(2) Splitting methods
• The first fractional substep uses an explicit or a locally implicit (at the

element level) scheme to march the non-linear advection term. In the
second fractional substep, the viscous correction is carried out via an
implicit scheme (EISTSE).

• The convective term is treated explicitly using pth-order Adams-
Bashforth multistep schemes. In the second substep, the viscous term
is treated implicitly using the above-mentioned space-time spectral
element approach (EIABSTSE).

A subcycling technique, in which several hyperbolic substeps are taken for
each implicit parabolic substep, was also investigated (CEISTSE).

Splitting techniques may be advantageous if the hyperbolic subproblem is
stiff relative to the parabolic one[5] (e.g. when shocks are formed). In this case,
the temporal decoupling (with subcycling) is desirable in order to avoid

Figure 2.
Schematic illustration of
the timewise translation
of a mesh consisting of
two time elements of
degree 8 (the horizontal
displacement is not
physical but for
purposes of
visualization
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unnecessary solution of the parabolic subproblem. However, the number of
subcycles should be kept low in order to avoid significant loss of accuracy[9].

In this presentation, our primary objectives are to construct the following
two substeps weak formulation (STDSE) and to investigate its stability and
accuracy.

The hyperbolic substep
The space-time discontinuous Galerkin method is employed as the basis for this
formulation which can be written as follows[6].

Within each space-time element eG
m, find U* ∈ U* such that

(2)

where n is a unit outward normal vector to S; ±U = limε→0 U(ξ ± ε); the double
bracket denotes the jump operator [[U]] = + U – –U acting on U at ξ located at
the inter-element “singular” surfaces. As will be seen in the stability analysis
(see also [6-8]), these jump terms are stabilizing operators; U* is the space of
piecewise polynomials with no continuity requirement across inter-element
boundaries and W* is the corresponding space of test functions.

Equation (2) defines an algorithm in which the calculations may be
performed on an element-by-element basis[6,7]. Consequently, CPU time and
storage are not influenced by the nodal numbering. This advantage increases in
non-linear applications where frequent refactorizations are typically
necessary[6,7]. The initial computing domain is represented by a collection of
space-time macro elements. Each of the macro elements may be refined by h-, p-
or hp-refinements[6,7]. Switching function representation is a very useful data
structure and can be employed efficiently for adaptively generating and
refining the mesh[21]. Flux vector splitting with an alternating sweep in the
forward and backward space directions has been employed in [6,7]. According
to this algorithm, the discontinuities of the split fluxes are weighted along all
inter-element boundaries, which results in a physically meaningful upwinding
effect. Other numerical flux splitting may improve performance and be worth
investigating. The elements near the sharp front can be tilted in such a way that
they are aligned with the shock line[7]. Thus, the generalized jump conditions at
the singular surfaces can be approximated accurately.
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The parabolic substep
The space continuous-time discontinuous Galerkin method is employed as the
basis for this formulation which can be written as follows[15,16].

Within each space-time strip Gn, find U ∈ U such that

(3)

where for the subcycling approach m ≠ n; U is the space of piecewise
polynomials with no continuity requirement across Ωn and W is the
corresponding space of test functions; Q* includes the contribution of the
convective term calculated at the hyperbolic substep.

Equation (3) defines an algorithm in which the calculations may be
performed on one space-time strip at a time. At the end of each time step, a new
spatial spectral element mesh can be constructed adaptively according to the
distribution of a proper error indicator. This may yield approximations that
take advantage more fully of the ideas behind space-time discretizations. This
dynamic gridding may also provide significantly improved computational
efficiencies by allocating the majority of nodes to the region of the solution
domain where they are most needed (e.g. at the inner and outer layers) while
using relatively few in regions where the solution has low gradients. For non-
linear problems, the solution is being built up iteratively while the mesh is being
refined.

Results
The discussion is restricted to selected representative model problems (for more
details see [6-9,17-18,22-24]) using the Bubnov-Galerkin method and employing
rectangular elements. Equation (1) describes the mass, momentum and energy
balance in a one-dimensional flow with heat transfer. By appropriate choice of
various terms in this equation, different physical problems can be modelled, e.g.
the one-dimensional heat conduction equation (problem 1), the energy equation
for a fluid flow of known and constant velocity (problem 2) and the momentum
balance equation in a flow with negligible or no pressure gradients (problem 3).
These particular problems are useful for purposes of comparison, performance
and error evaluation, as they have known analytical solutions.
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Problem 1: transient diffusion

(4)

with the initial and boundary conditions specified so that the exact solution is
given by u = e–π2t cos(π x). For the continuous Galerkin method (using the
ISTSE approach), the global discrete L2 error is shown in Figure 3. The slope of
the lines indicates that the order of the method is sub-optimal (||e||~O ((∆t)p).
For p = 2, the coupled methods give equations that can be interpreted in terms
of finite difference approximations. The ESTSE yields the Richardson explicit
approximation which is of second order but is unconditionally unstable and
therefore has no practical value. The ISTSE gives a second-order backward
difference for the time derivative and central differencing for the space
derivative. The stability analysis (based on the matrix method) shows that
ISTSE is an unconditionally stable scheme for 2 ≤ p ≤ 10. The results
corresponding to the time discontinuous Galerkin method (equation 3), are
depicted in Figure 4 (ndof denotes the number of degrees of freedom). It is shown
that for this formulation the optimal rate of convergence is achieved (m ~ (p + 1)).
For comparison, the consumed CPU time (on a Dec 5000/200 workstation) is
also shown.

Figure 3.
Problem 1 –

Convergence rates and
CPU time for various
polynominal degrees

(ISTSE)
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Problem 2: transient linear convection-diffusion

(5)

where V is taken to be constant. This linear problem is employed both for a
priori (Fourier-based) as well as a posteriori stability and accuracy analyses.
The initial conditions consist of the Gaussian distribution[10,25], i.e. u0(x) =
exp 2σ

(x–x
2
0

0)2, g1 = 0, g2 = 0), Adaptive mesh refinement strategies are also analysed.
Fourier analysis conducted for 3 ≤ p ≤ 5 showed that the STDSE is

unconditionally stable for the whole range of Courant and Fourier numbers.
This is to be expected since for each substep the corresponding scheme is
unconditionally stable (see [6-8] for the pure hyperbolic case and the previous
example for the pure parabolic case).

The Gaussian distribution problem was solved both with a dynamic grid
chosen in a heuristic way suggested in [25] and with an adaptive mesh built
according to solution gradients. The dynamic grid was built in the following
way: the initial mesh consists of three sub-meshes; two of the sub-meshes are
located outside the Gaussian bell while the third sub-mesh is located inside it
(each of them is uniformly distributed within each sub-region). Afterwards, the
central sub-mesh moves with the Gaussian bell group velocity. The propagation

Figure 4.
Problem 1 –
Convergence rates and
CPU time for various
polynomial degrees
(STDSE)
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of the Gaussian wave for l = 10, V = 1.0, initial centre of mass x0 = 3.0, standard
deviation σ0 = 0.3 and v = 0.3 is depicted in Figure 5(a). Figures 5(b) and 5(c)
show the solution obtained by using an adaptive grid strategy and a dynamic
grid strategy, respectively, as well as the evolution of the grids during the
solution progress. The convergence rate has been verified by solving this
problem analytically. Figure 6 shows the L2 error versus the number of degrees
of freedom, in the case of the dynamic grid and for different values of the
polynomial degree (p = 3, 4, 5, 6, 8). The slope of the lines, m, clearly indicates
that the order of the method is (p + 1).

Problem 3: transient non-linear convection dominated
Burger’s equation is a very suitable model for testing various computational
algorithms for convection-dominated flows where severe gradients are created.
During the past few years, a great deal of effort has been placed in attempting
to compute efficiently the solution of this equation for very small values of the
viscosity. Among the computational methods, finite difference, spectral,
spectral element and space-time finite element methods have been mainly
used[1,7,9,26,27]. Results are presented for the following problem:

(6)

The linear stability analysis can be performed only for linear PDEs. Non-linear
PDEs must therefore be locally linearized, after which a stability analysis is
performed on the local amplification matrix of the corresponding spectral

Figure 5a.
Problem 2 – Analytic

solution for the
propagation of a

Gaussian wave
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Figure 5b.
Problem 2 – Adaptive
mesh solution and the
corresponding grids
(STDSE)
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Figure 5c.
Problem 2 – Dynamic
mesh solution and the

corresponding grids
(STDSE)
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element scheme which approximates the linearized PDEs. The corresponding
amplification matrix is time-dependent. Applying this approach results in
highlighting some limitations on the mesh parameters (i.e. the Courant and
Fourier numbers[9] in the present case).

Figure 7 shows these stability-induced limitations in the form of a Fourier-
Courant numbers relationship for both ESTSE[9] and the present discontinuous
Galerkin (STDSE) approaches. The schemes are stable for Fourier-Courant
number pairs between the respective curves and the horizontal axis.
Subsequent numerical experiments show this analysis to be accurate.

Figure 8 shows the CPU time consumption (on a Dec 3000/600 workstation)
versus the polynomial degree for two constant error tolerances (||e|| = ε,
where ε = 1.0 × 10–4, 1.0 × 10–5 is measured by the discrete L2 norm) for both the
continuous and discontinuous Galerkin methods.

Figure 9 depicts the influence of subcycling on accuracy and CPU time
requirements (on a Dec 3000/600 workstation) for a constant number of degrees
of freedom (ndof = 240) and for the continuous (CEISTSE[9]) as well as the
present discontinuous Galerkin (CSTDSE) methods. It is observed that a few
subcycling substeps can yield a small loss of the accuracy while giving a
significant reduction in the CPU time.

Convergence analysis was conducted in order to compare the performance of
the present formulation (STDSE) with other methods[9]. The error was
measured by both the discrete L2 and H1 norms. The full rate of convergence is
achieved when the error is measured in regions where the solution is

Figure 6.
Problem 2 –
Convergence rates and
CPU time for the
Gaussian Bell initial
condition problem and
various polynomial
degrees (STDSE)



Spectral element
methods

227

Figure 8.
Problem 3 – CPU time

consumption
(C–ESTSE; D–STDSE)

Figure 7.
Problem 3 – Locally

linearized stability
regions (C–ESTSE;

D–STDSE). Schemes are
stable for Fo-Co pairs

between the respective
curves and the
horizontal axis



HFF
7,2/3

228

smooth[7,9]. However, when the shock is included, the rate of convergence (for
uniform mesh refinements) is independent of p (it is actually controlled by the
“smoothness parameter” of the true solution[7,9,14]).

The effect of p-refinement (p = 2, 4, 6, 8; uniform mesh with the natural
clustering of the Legendre-Gauss-Lobatto points; nel = 30, t = 0.1 seconds after
the shock wave has been formed); as well as the effect of geometric mesh
refinement (q–1 is the common factor of the geometric progression; p = 2, nel =
40), on the spurious dispersion are clearly demonstrated in Figures 10 and 11
respectively (for the EISTSE method with v = 1.0 × 10–3).

The spurious oscillations can be suppressed efficiently by an adaptive
hp–refinement[7,27] or by switching from a time-continuous to a time-
discontinuous scheme (the discontinuous jump tends to act as a stabilizer).
Figures 12 and 13 show the performance of the continuous and discontinuous
space-time spectral elements (ESTSE and STDSE) respectively (on identical
uniform grids). It is clearly seen that the STDSE scheme is superior in its shock-
capturing features, i.e. suppressing the wiggles and reproducing crisp wave
fronts.

Concluding remarks
The main conclusions of this study are as follows:

• The proposed discontinuous spectral element method has been shown to
be a computationally efficient scheme for the whole range of physical

Figure 9.
Problem 3 – CPU time
consumption versus
number of subcycles
(C–CEISTSE;
D–CSTDSE)



Spectral element
methods

229

Figure 10(a).
Problem 3 – Artificial

oscilliations adjacent to
the shock front for

various p (EISTSE)
p = 2

Figure 10(b).
Problem 3 – Artificial

oscilliations adjacent to
the shock front for

various p (EISTSE)
p = 4
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Figure 10(c).
Problem 3 – Artificial
oscilliations adjacent to
the shock front for
various p (EISTSE)
p = 6

Figure 10(d).
Problem 3 – Artificial
oscilliations adjacent to
the shock front for
various p (EISTSE)
p = 8
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Figure 11(b).
Problem 3 – Artificial

oscillations adjacent to
the shock front for

various geometric mesh
refinement (EISTSE)

q = 1.2

Figure 11(a).
Problem 3 – Artificial

oscillations adjacent to
the shock front for

various geometric mesh
refinement (EISTSE)
q = 1 (uniform grid)
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Figure 12.
Problem 3 – Artificial
oscillations adjacent to
the shock front for
ESTSE (uniform mesh;
nel = 30; p = 3)

Figure 13.
Problem 3 – Artificial
oscillations adjacent to
the shock front for
STDSE (uniform mesh;
nel = 30; p = 3)
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parameters (i.e. for pure convection, pure diffusion and convection-
diffusion cases). The potential of this method is greater in convection-
dominated problems where severe gradients are encountered.

• A subcycling technique is investigated in the framework of a time-
splitting method. Results show that this approach is superior to the
others in terms of robustness and CPU time consumption.

• The Burger’s equation is the simplest one-dimensional model combining
both diffusive and non-linear propagation effects and therefore is
classically employed as a test case for numerical algorithms which solve
flow problems[1,2,26,28] because its solution can form sharp gradients.
Ways to suppress the wiggles at the shock front are investigated. One
approach to achieving this objective is to refine the mesh gradually
towards the inner boundary layer while using low-order elements in its
vicinity. If a uniform mesh is of great importance, it is shown that the
wiggles can be suppressed by employing high-order elements in the
vicinity of the inner layer and using the natural clustering of the
Legendre-Gauss-Lobatto points. This equation is restricted, in the
convective sense, to weak shock waves, owing to a lack of pressure
gradients. The addition of an inhomogeneous mass source term (as in
chemically reactive flows) yields the modified Burger’s equation which
emulates the influence of an unsteady continuity equation. The result is
that the solution can develop strong shock waves. However, these scalar
versions of equation (1) are unsatisfactory in both the Cole-Hopf analytic
sense (since continuity is not satisfied) and the physical sense (since
buoyancy and dissipation are not accounted for). Compressibility effects
can be examined via the compressible inviscid one-dimensional Euler
equation[7]. However, this is not satisfactory in the physical sense, since
it does not account for buoyancy and dissipation effects[29]. In order to
account for buoyancy, dissipation and strong shock waves[7], the
complete (i.e. vector) two-dimensional (at least) version of equation (1)
must be solved. This endeavour is the subject of our current research.

• We can use methods for automatically refining or redistributing spectral
element meshes so as to reduce error in the solution[11-13,27,30]. When
non-linear problems are considered, adaptive p- and hp-refinement are
very appealing.

• Equations (2) to (3) give a plethora of possibilities for choosing the test
and base functions and the refinement strategy[6-8,16,20]. This ability,
together with the parallel implementation of the proposed time-splitting
method on concurrent processors, makes it very attractive.

• The solution accuracy of convection-dominated problems can be
improved through application of the asymptotic spectral element
algorithms[22-24].
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• Our final goal is to develop space-time spectral elements for solving the
full multi-dimensional Navier-Stokes equations. The present paper is
another step towards achieving this goal.
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